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ABSTRACT 
 

A method for estimation of Doppler spectral moments on pulsed 
weather radars is presented. This scheme operates on 
oversampled echoes in range; that is samples of in-phase and 
quadrature phase components are taken at a rate several times 
larger than the reciprocal of the transmitted pulse length. The 
aforementioned radar variables are estimated by suitably 
combining weighted averages of these oversampled signals in 
range with usual processing of samples (spaced at pulse 
repetition time) at a fixed range location. The weights in range 
are chosen such that the oversampled signals become 
uncorrelated and consequently the variance of estimates 
decreases significantly. Because estimates’ errors are inversely 
proportional to the volume scanning times, it follows that storms 
can be surveyed much faster than it is possible with current 
processing methods, or equivalently, for the current volume 
scanning time, accuracy of estimates can be greatly improved.  
 
 
 

1. INTRODUCTION 
 
Weather radars provide estimates of spectral moments (i.e., 
signal power, mean Doppler velocity, and spectrum width) that 
relate to intensity of precipitation and/or refractive index 
fluctuations and winds. Weather signals are defined as composite 
echoes from a very large number of individual hydrometeors or 
from refractive index irregularities in clear air. These signals are 
sampled at discrete time delays s, where the corresponding 
range (or distance from the radar) is given by r = cs/2 (c is the 
speed of light.) The time delay s is also called the range time, 
i.e., the time it takes a transmitted pulse to make a round trip to a 
distance r. Pulses of width  are sent every Ts seconds, which 
gives origin to the sample-time, or time between samples for a 
fixed location in range. For each sample value there is an 
associated resolution volume in space with the hydrometeors that 
contribute the most to that sample.  

The variance reduction of averaged estimates is inversely 
proportional to the equivalent number of independent samples 
MI, which depends on the correlation between samples and the 
total number M of samples averaged as follows [1] 
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where the correlation coefficient (m) refers to time (from pulse 
to pulse) or range, and m is an integer indicating the lag. For 
correlation in sample time, the lags are mTs, where Ts is the pulse 
repetition time; for sampling in range the lags are m(τ/L), where τ 
is the pulse length and L a positive integer greater than one if the 
pulse is oversampled in range. The time correlation function 
depends on the Doppler spectrum width, which is one of the 
parameters to be estimated. If samples are averaged in range and 
the radar resolution volume (i.e., pulse volume) is uniformly 
filled with scatterers, the correlation coefficient is determined by 
the pulse shape and the receiver filter impulse response. After 
the receiver filter, the correlation coefficient of samples in range 
time can be determined as [1] 
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where the superscript * denotes complex conjugation, p(m) is the 
transmitted pulse shape, and h(m) is the impulse response of the 
receiver filter. Note that the expression for the correlation 
coefficient along range time depends solely on parameters that 
are known (or can be measured) and therefore allows for its 
exact determination.  
 

2. WEATHER SIGNAL PROCESSING 
 

The principal purpose of radar signal processing is the accurate, 
efficient extraction of information from radar echoes. Modern 
atmospheric Doppler radars can sample an entire volume of a 
weather event in a short period of time. Therefore, a very large 
amount of data must be processed to give the user compact, 
comprehensible information. Note that signal processing on 
weather radars is primarily an estimation procedure. Target 
detection is not the goal of these remote sensing devices. 

To obtain meaningful estimates that allow efficient 
quantification of weather phenomena, estimation errors must be 
kept below maximum allowable limits. The only parameter we 
can adjust to accommodate these requirements is the number of 
samples in the estimation process. Achieving smaller errors 
requires more samples, which in turn implies a slower antenna 
rotation rate and an overall increase in acquisition time; then 
probing of the weather phenomena would be performed less 
frequently. This statistical estimation framework becomes of 
particular significance if the goal is to scan a phenomenon 
quickly because the random-process nature of weather signals 



demands a certain amount of averaging if the desired accuracy is 
to be achieved. This is a trade-off in all polarimetric Doppler 
radar systems. 

To reduce the statistical uncertainty of estimates of spectral 
moments it is customary to average signals from many pulses. 
The variance reduction of averaged estimates is inversely 
proportional to the equivalent number of independent samples 
MI (1), which as stated before, depends on the correlation 
between samples and the total number of samples averaged. 

A technique that increases the number of independent 
samples by keeping the dwell time constant would reduce the 
trade-off described above. More independent samples would 
lower the estimates’ errors at the same antenna rotation rate, or 
volume scans times would decrease while keeping the errors at 
previous levels. A well-known method to reduce the acquisition 
time is the pulse compression technique [2]. Pulse compression 
can be applied to increase the number of independent samples by 
averaging high-resolution estimates in range. However, most 
ground-based weather radars do not use pulse compression due 
to the need to increase the transmission bandwidth. 
 

3. WHITENING TRANSFORMATION 
 

The current implementation of spectrum moment estimators uses 
a simple method of averaging in range at the expense of 
degradation in range resolution. Simple averaging, however, 
does not yield the best performance when the observations are 
correlated. 

It is know from estimation theory that classical estimators 
of the mean and variance of white (i.e. uncorrelated) Gaussian 
observations attain the Cramer-Rao lower bound. Therefore, one 
would like to derive a transformation on the original data based 
on the known correlation coefficient such that the resulting 
samples would be uncorrelated (or white). Still, this 
transformation would have to preserve the same properties that 
are of interest in the original sequence. Such transformation 
exists, and it is usually termed as “whitening” [3] or 
decorrelation transformation and has been applied to solve a 
variety of signal processing problems [4]. 

The procedure starts with oversampling in range so that 
there are L samples during the pulse duration τ, (that is 
oversampling by a factor of L). Assume that the range of depth 
cτ/2 is uniformly filled with scatterers. For relatively short pulses 
this is a common occurrence. For convenience, the contribution 
from the pulse volume to the sampled complex voltage V(nTs) = 
I(nTs) + j Q(nTs) at a fixed time delay, can be decomposed into 
sub contributions s(l,n) from L contiguous slabs each cτ/(2L) 
thick.  The index n indicates time at pulse repetition increments 
Ts. The voltages s(l,n) are identically distributed complex 
Gaussian random variables, the real and imaginary parts, 
Re{s(l,n)} and Im{s(l,n)}, have variances σ2, and the power of 
s(l,n) is σs

2 = 2σ2.   Pulse of an arbitrary shape p(l) (l are time 
increments within the transmitted pulse which correspond to a 
decreasing index in range) induces weighting to the 
contributions from contiguous slabs such that the composite 
voltage is 
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then the correlation of samples along range time is given by (2). 
For the ideal case of a rectangular pulse and infinite receiver 
bandwidth (2) simplifies to 
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The procedure for implementing the whitening 

transformation is as follows. Define the Toeplitz symmetric 
correlation coefficient matrix C ((0) = 1 on the main diagonal, 
(1) on the first off diagonal, (2) on the second off diagonal, 
etc.). Because this matrix is positive semidefinite, it can be 
decomposed into a product of a matrix H and its transpose as  
 
C = H Ht,     (5) 
 
where the superscript t indicates matrix transpose. Any H that 
satisfies (5) is called a square root of C [5] and is the inverse of a 
whitening transformation matrix W = H, which if applied to 
the range samples (in vector notation Vn

t = [V(1,n), V(2,n), ..., 
V(L,n)]) produces L uncorrelated random variables [6]. Denote 
with X(l,n) the sequence of time samples spaced Ts seconds apart 
each of which is obtained with this procedure (in vector notation  
Xn

t = [X(1,n), X(2,n), ..., X(L,n)]), i.e. 
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where wl,j are the entries of the whitening transformation W. 
 
3.1. Construction of the Whitening Matrix W 
 
In general the decomposition of C is not unique and many well-
known methods could be applied to generate different whitened 
sequences. Two prominent methods to generate whitened 
sequences are the eigenvalue decomposition [7] and triangular 
(or Gram-Schmidt orthogonalization) decomposition [7,8].   

In the eigenvalue decomposition method the eigenvalues λi 
of the correlation matrix C are computed first and C is 
represented as C = UΛUt, where Λ is a diagonal matrix of 
eigenvalues, and U is the unitary transformation matrix whose 
columns are the eigenvectors of C. Then, to obtain W a diagonal 
matrix D with elements on the diagonal equal to λi

 is 
constructed and W = H = DUt. 

Triangular or Cholesky decomposition is identical to the 
Gram-Schmidt orthogonalization [8]. The matrix H is a lower 
triangular matrix. Hence the whitening matrix is also lower 
triangular.  A possible advantage of triangular H matrices is that 
whitening can proceed in a pipeline manner; that is, 
computations can start as soon as the first sample is taken and 
progress through subsequent samples. Non-triangular H matrices 
require presence of all data before computations can start. 

 
4. SPECTRAL MOMENT ESTIMATION 

 
4.1. Signal Power 
 
Power estimates are computed from whitened oversampled data 
as follows 
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where N is the noise power and as before, M is the number of 
samples obtained for at a fixed range location, and L is the 
oversampling factor. It can be proved that the improvement in 
variance reduction ratio when compared with the regular 
processing where the whitening transformation is not applied is 
 

L

L

SVar

SVar

whitened

colored
2

1

]ˆ[

]ˆ[ 2 
  .    (8) 

 
4.2. Mean Doppler velocity and spectrum width 
 
Several options exist for determining the mean velocity. 
Autocovariance processing produces correlation estimates in 
sample time 
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where |m| is the lag index between 0 and Mand l the range 

index between 0 and L.  )(ˆ
sl mTR estimates are averaged in 

range (over the index l) so that the variance of the estimate   
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decreases as L increases with the same relation as in (8).  

From (10) Doppler velocity and spectrum width estimates 
can be obtained as [1] 
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respectively, where  is the transmitter wavelength. 
 
4.3. Performance with Additive Noise 
 
The presence of noise is inherent to every radar system, so it is 
of concern to analyze the performance of the whitening 
transformation under noisy conditions. When applying the 
whitening transformation, both signal and noise are evenly 
affected. The noise, which was white prior to the whitening 
transformation, becomes colored. It can be shown using 
eigenvalue decomposition of C that the SNR for each 
oversampled signal component is scaled from the original SNR 
by the corresponding correlation matrix eigenvalue. For i > 1, 
the SNR of the whitened signal increases; otherwise, the noise 
gets enhanced. 

For a correlation matrix corresponding to (4) it is not very 
difficult to find a closed-form expression for the noise 

enhancement factor. In this case 
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The previous equation shows that the noise is enhanced for 

L>1 (which is always the case). Therefore, for weak SNR, the 
variance reduction achieved by increasing L will be masked by a 
corresponding noise power boost. This trade-off in the presence 
of additive noise makes the whitening transformation useful in 
cases of relatively large SNR. In fact, for weather radars, the 
SNR of signals from storms is indeed large.  
 

5. RESULTS 
 

The proposed procedure [9] entails whitening in range the 
oversampled signals, processing of time samples by any one of 
the well-known algorithms, and combining the results from the 
whitened signals in range to yield significant reduction in 
variances of the estimates. This variance reduction occurs only if 
the signal-to-noise ratios are relatively high as is usually the case 
for most signals in weather surveillance radars. At low signal-to-
noise ratios the variances increase so that there are crossover 
points (these are different for different estimates) of the 
variances. Below the cross over SNR, the classical processing 
produces lower variances. In general the cross over SNR 
depends on the variable that is to be estimated and on some other 
parameters (spectrum width, number of samples, etc.) An 
objective decision on which estimates to use, classical or the 
ones obtained from whitened samples in range, should be based 
on the SNR and possibly on estimates of other parameters that 
affect the variance.  

Fig. 1 shows the results for the case of power estimation on 
colored (or correlated) and whitened noise-free observations. 
Theoretical results are also plotted to verify the agreement 
between theory and simulations. Observe that with oversampling 
factors of eight or more, the variance reduction is greater than 
four times. Fig. 2 shows the results obtained when estimating the 
set of three spectral moments (mean power, mean Doppler 
velocity, and Doppler spectrum width) in the presence of 
additive white Gaussian noise. This figure shows the standard 
deviation of estimates versus the SNR using an oversampling 
factor of 10. We can see from these plots that for low SNR, the 
noise enhancing effect prevails, and the variance reduction 
obtained by the whitening transformation is masked. Beyond the 
crossover point, which is different for each parameter being 
estimated, the variance of estimates decreases as the SNR 
increases, until it reaches its theoretical minimum (for the ideal 
case of no noise). In addition it can be verified that for the range 
of interest (SNR>12dB), the estimators of spectral moments 
using the whitening transformation are unbiased. 
 

6. CONCLUSIONS 
 

This method allows increasing the speed of volume coverage by 
weather radar so that hazardous features can be timely detected. 
It also leads to better estimates of precipitation and wind fields. 
The application of this technique is possible because of two 
reasons:  

(1) The correlation of samples in range is known exactly if 
the resolution volume is uniformly filled with scatterers (true 



over relatively short ranges), and the receiver bandwidth is large 
compared to the reciprocal of the pulse length.  

(2) For all weather phenomena of interest, the SNR is 
relatively high, so the increase of noise power is not detrimental 
to the procedure.  

The initial agreement between the theory and simulation 
results suggests that the advantages of the proposed processing 
will hold in practice. 
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Fig. 1. Comparison of simulation results with theoretical 
predictions of standard deviation of power (top) and variance 
reduction of power estimates (bottom) vs. the oversampling 
factor L. In the bottom are the normalized mean powers.  
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Fig. 2. Standard deviation of power (top), mean Doppler velocity 
(middle), and Doppler spectrum width (bottom) obtained by 
simulating correlated range samples and applying both 
traditional and proposed processing. M is the number of time 
samples (separated by Ts) which are used to compute the 
Doppler spectrum and its moments. L is the oversampling factor, 
i.e., the number of range samples that are used to reduce the 
standard error of estimates. The simulation results were obtained 
from 1000 realizations. For visual clarity, lines connect the 
simulation results (circles at SNR increments of 3dB). 


